

Performance of open-path lasers and FTIR spectroscopic systems in agriculture emissions research

- Mei Bai¹, Zoe Loh², David W. T. Griffith³, Debra Turner¹, Richard Eckard¹, Robert Edis¹, Owen T. Denmead⁴, Glenn
 W. Bryant³, Clare Paton-Walsh³, Matthew Tonini³, Sean M. McGinn⁵, Deli Chen¹
- W. Dryant, Chare Faton- warsh, Matthew Folinin, Sean M. McOhini, Den Chen
- 5 ¹Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- 6 ²CSIRO Oceans & Atmosphere, PMB 1, Aspendale, VIC 3195, Australia
- 7 ³School of Chemistry & Centre for Atmospheric Chemistry, University of Wollongong
- 8 Wollongong, NSW 2522, Australia
- 9 ⁴Deceased, CSIRO Agriculture and Food, GPO Box 1666, Canberra, ACT 2601, Australia
- 10 ⁵Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- 11 Correspondence to Mei Bai (mei.bai@unimelb.edu.au)
- 12 Abstract. The accumulation of gases into our atmosphere is a growing global concern that requires considerable
- 13 quantification of the emission rates and mitigate the accumulation of gases in the atmosphere, especially the
- 14 greenhouse gases (GHG). In agriculture there are many sources of GHG that require attention in order to develop
- 15 practical mitigation strategies. Measuring these GHG sources often rely on highly technical instrumentation originally
- 16 designed for applications outside of the emissions research in agriculture. Although the open-path laser (OPL) and
- 17 open-path Fourier transform infrared (OP-FTIR) spectroscopic techniques are used in agricultural research currently,
- 18 insight into their contributing error to emissions research has not been the focus of these studies. The objective of this
- 19 study was to assess the applicability and performance (accuracy and precision) of OPL and OP-FTIR spectroscopic
- 20 techniques for measuring gas mixing ratio from agricultural sources. We measured the mixing ratios of trace gases
- 21 methane (CH₄), nitrous oxide (N₂O), and ammonia (NH₃), downwind of point and area sources with known release
- 22 rates. The OP-FTIR provided the best performance regarding stability of drift in stable conditions. The CH₄ OPL
- 23 accurately detected the low background (free-air) level of CH₄; however, the NH₃ OPL was unable to detect the
- 24 background values < 10 ppbv.
- 25 Keywords: spectroscopy, open path, precision, trace gas, OP-FTIR, laser

26 1 Introduction

- 27 Globally, agriculture contributes approximately 10-12% of anthropogenic greenhouse gases (GHG) entering the
- atmosphere in 2010 (Smith et al., 2014). The majority of these emissions come from the livestock sector, which
- 29 includes methane (CH₄) from enteric fermentation in ruminants, direct nitrous oxide (N₂O) from animal excreta
- 30 through the nitrification and denitrification processes, and indirect greenhouse effects due to N leaching, runoff,
- 31 and atmospheric deposition of ammonia (NH_3) vitalization from manure by forming N₂O emissions. Globally, the
- 32 indirect N₂O emissions account for one third of the total N₂O emissions from agricultural sector (de Klein et al.,
- 33 2006).
- 34

35 Direct field measurements of agricultural GHG emissions are difficult due to its high spatial and temporal variation, 36 diverse source emissions, and lack of appropriate measurement techniques. Consequently, the Intergovernmental 37 Panel on Climate Change (IPCC, 2006) and Australia's National Greenhouse Gas Inventory Committee (NIR, 38 2015) use national emission rates that have been based primarily on extrapolations of laboratory and enclosure 39 measurements. Such extreme extrapolations are subject to greater uncertainty than would be the situation if farm-40 scaled values were used. Meeting international obligations on GHG reporting should ultimately require non-41 intrusive emission measurements at an appropriate regional scale. Moreover, development, implementation and 42 adaptation of mitigation strategies relies on well-developed measurement methodologies. 43

- 44 Although considerable effort is being made to document GHG emissions from land-management practices, the 45 measurement techniques employed in that endeavour are not ideal. Surface chamber method is typically used to 46 measure gas fluxes from the soil surface, but substantial numbers of surface chambers are required to reduce the 47 temporal and spatial variations in gas emissions from large scale source (McGinn, 2006). Mass balance techniques 48 measured emissions from a source area are based on the total influx and efflux of each gas carried into and out of a 49 control volume (Denmead, 1995). Original applications of this method required the targeted source area to be bounded 50 by a "fence" of sampling pipes that extended to the upper limit of the gas plume generated from the source. Influxes 51 and effluxes were calculated by integrating the horizontal fluxes (the product of wind speeds and gas concentrations) 52 across the boundaries (Denmead et al., 1998). The plume generated from an area source is expected to extend up to a 53 height of at least one-tenth of the upwind fetch. Two technological developments together offer a considerable 54 simplification and flexibility of this basic mass balance technique. The advent of open-path (OP) gas analysers has 55 enabled the measurement of average mole fractions over long path lengths, removing the need for sampling tubes, 56 pumps and multiplexing to a closed-path analyser. In addition, mathematical models of atmospheric dispersion allow 57 fluxes to be inferred from concentration measurements and boundary layer wind statistics. Studies of using these 58 combined OP and dispersion techniques have been reported extensively, such as dairy farms (Bjorneberg et al., 2009; 59 Harper et al., 2009; VanderZaag et al., 2014), grazing cattle (Laubach et al., 2016; Tomkins et al., 2011), cattle feedlots 60 (Bai et al., 2015; Loh et al., 2008; McGinn and Flesch, 2018), boiler production (Harper et al., 2010), storage lagoon 61 (Bühler et al., 2020; McGinn et al., 2008), animal waste treatment (Bai et al., 2020; Flesch et al., 2011; Flesch et al., 62 2012), bush fire (Paton-Walsh et al., 2014), geosequestration from industries (Feitz et al., 2018; Loh et al., 2009), and 63 urban vehicle emissions (Phillips et al., 2019). Although these combined OP and dispersion techniques have 64 increasingly gained researchers' attentions as a useful tool in measuring gas emissions from large scale field, such as 65 insight into the OP sensors contributing error to emissions research has not been the focus of these studies.
- 66

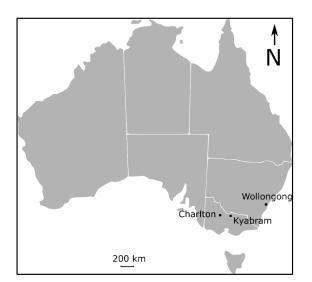
67 The purpose of our study is to evaluate these two techniques for measuring GHG emissions from agricultural lands.

68 Two OP spectroscopic techniques are used to determine line-averaged mixing ratios in the field measurements. The

69 underlying principles of the method and the accuracy and precision of the broad band OP-Fourier transform infrared

70 spectrometer (FTIR) and single band OP-laser (OPL) spectrometer are tested at experimental sites using releases of

71 gases at known rates from a point and area sources. We measured the mole fractions (in air) of CH₄, NH₃ and N₂O



- 72 with two spectroscopic techniques when gas was released at a known rate. This study would be the first paper of solely
- 73 comparing the performance between OP concentration sensors and provide the information as reference for
- 74 measurement techniques in large-scale gas emission research.
- 75 2 Materials and Methods

76 2.1 Experimental design

- 77 The field measurement campaigns were conducted at three sites (Fig. 1):
- 78 Kyabram, Victoria DPI Irrigated dairy research farm (36.34°S, 145.06°E, elevation 104 m). This is a well-established
- research site ideal for micrometeorological measurements, with flat terrain and an existing suite of instrumentation.
- 80 Measurements were set up in two adjacent bays near the existing micrometeorological site. The principal disadvantage
- 81 of this site was the considerable variation in background trace gas concentrations (particularly CH₄), due to the high
- 82 cattle population in the region.
- 83 University of Wollongong (34.41°S, 150.88°E, elevation 26 m). The No.3 sports oval at the University of Wollongong
- 84 is a flat, grassed area approximately 200-250 m in extent. It is surrounded by trees and not a suitable site for
- 85 micrometeorological measurements but was well suited to trial release measurements and early OP-FTIR field tests.
- 86 Commercial beef cattle feedlot, Victoria (225 km northwest of Melbourne, Australia). This site was used for
- 87 comparisons of sensors side-by-side experiments. The farm is flat and well suited to micrometeorological
- 88 measurements of CH₄ emissions from cattle pens.
- 89

90

92 The trace gas release measurements including point and area sources were conducted at Kyabram and Wollongong,

93 assuming that all trace gases (CH₄, NH₃, and N₂O) disperse equally from source to open path (OP). Two OP sensors

94 were trialled – a broad band FTIR spectrometer (OP-FTIR) and a single wavelength laser-based instrument (OPL).

- 95 Besides the gas release measurements, two OP-FTIR sensors were also conducted a side-by-side comparison of
- 96 measuring gas concentrations from cattle pens at a commercial beef cattle feedlot. A summary of these trials is shown
- in Table 1.
- 98

99 Table 1. Summary of field measurements at Kyabram, Wollongong, and the Victorian feedlot. Target gases, 100 instrumentations used for the studies, and study durations are also shown.

Trial and Date	Location	Experiment	Pathlength/m	Height/m	Target	ОР
					Gases	sensor ^ð
T1	Kyabram	Gas releases,	137/125	0.5	CH ₄ , N ₂ O,	OP-
(25-29 July 2005)		point sources			NH ₃	FTIR§
T2	Kyabram	Gas releases,	137/125	Ground	CH ₄ , NH ₃	OP-
(1-4 Aug. 2005)		area sources,				FTIR [§] ,
		Side-by-side				OPL
		comparison				
Т3	Wollongong	Gas releases,	87.5/150	1.28	CH4, N2O,	OP-
(14-18 May		point sources,			NH ₃	FTIR [§] ,
2005)		Side-by-side				
		comparison				
T4	Wollongong	Gas releases,	148	0.5/1.28	CH4, NH3	OP-
(15-16 Mar.		point sources,				FTIR§,
2006)		Side-by-side				OPL
		comparison				
T5 (28 Feb5	Feedlot	Side-by-side	100	1.7*	CH4, N2O,	OP-
Mar. 2008)		comparison			$\rm CO_2$	FTIR [§] ,
						OP-
						FTIR [‡]

- 101 § (Bomem)
- 102 [‡] (Bruker) 103 [‡] feedlot ca

³ ^{*} feedlot cattle were the main CH₄ source, the average of cattle height was 1.7 m.

104 $^{\delta}$ the path length for all OP sensors was 1.5 m above the ground.

105

106Table 2. Gas release times, rates, and source types for controlled release experiments at Kyabram DPI (July-August). Mass107flows measured in standard litres per minute (21°C and 1 atm pressure) have been converted to mg s⁻¹.

			FTIR	Laser	Relea	se rates	(mg s ⁻¹)
Date	Time	Source	Path	Path	CH4	NH3	N ₂ O
27/07/2005	10:47 - 12:52	1	1	-	55.37	58.80	151.95
	12:52 - 14:17	1	1	-	99.67	105.84	151.95

	15:13 - 16:18	2	1	-	99.67	105.84	151.95
	17:47 - 08:23	2	1	-	27.69	29.40	75.97
28/07/2005	10:44 - 14:41	2	1	-	55.37	58.80	151.95
	14:41 - 16:42	2	1	-	99.67	105.84	151.95
	17:29 - 10:52	1	1	-	27.69	29.40	75.97
29/07/2005	10:52 - 11:33	1	1	-	11.07	11.76	30.39
	11:33 - 12:05	1	1	-	5.54	5.88	15.19
	12:43 - 13:51	1	1	-	27.69	29.40	75.97
	13:51 - 14:25	1	1	-	55.37	58.80	151.95
	14:25 - 15:00	1	1	-	99.67	105.84	273.51
	15:00 - 15:30	1	1	-	55.37	58.80	151.95
	15:30 - 16:00	1	1	-	11.07	11.76	30.39
	16:00 - 16:30	1	1	-	2.77	2.94	7.60
1/08/2005	15:17 - 15:45	1	1	-	55.37	105.84	0.00
	15:45 -16:58	1	1	-	55.37	105.84	151.95
	17:18 - 18:16	1	1	-	55.37	0.00	303.90
	18:16 - 09:00	3	1	-	55.37	58.80	151.95
2/08/2005	12:46 - 16:17	3	2	2‡	55.37	58.80	151.95
	17:08 - 18:19	4	2	2≠	5.54	5.88	15.19
	18:19 - 08:55	4	2	2≠	5.54	0.00	15.19
3/08/2005	08:55 - 09:15	4	2	2≠	5.54	5.88	15.19
	09:15 - 09:33	4	2	2≠	0.00	2.35	0.00
	09:33 - 10:26	4	2	2≠	55.37	58.80	151.95
	1						

[‡]Laser NH₃ only. Laser path was located 3 m north of path 2.

109 \neq Laser NH₃ and laser CH₄. Laser CH₄ path was located 3 m south of path 2.

110 2.2 Gas release experiments

111 The underlying principles of the method and the accuracy and precision of the FTIR and laser spectrometers were

112 tested at Kyabram and Wollongong using releases of CH₄, N₂O, and NH₃ at known rates from a common point or area

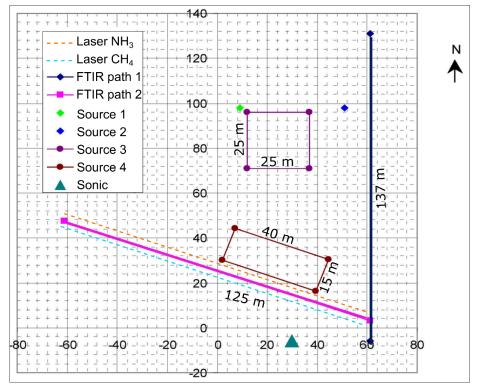
- 113 source.
- 114

115 We first conducted the gas release measurements at Kyabram during a period of suitable conditions of steady wind

and near neutral stability, and there were no other strong sources of CH_4 , N_2O , and NH_3 nearby. Gas release points

117 (sources 1 and 2) were located to the west of the FTIR path 1, which ran N-S along the fence line (Fig. 2). Area sources

118 (sources 3 and 4) were located to the north of the FTIR path 2, which ran NW-SE direction (Fig. 2). The OPL sensors


119 (NH₃ and CH₄) were set up on the north and south parallel to FTIR path 2, respectively (Fig.2). The path height for

120 all OP sensors was 1.7 m above ground level and the measurement path was 137 and 125 m (two-way path) for path

- 121 1 and 2, respectively. The gas release heights varied from ground level (area sources) to 0. 5 m above the ground
- 122 (point sources). The layout of sources and open path geometries at Kyabram are summarised in Figure 2. A summary
- 123 of the gas release times, source types and OP sensor measurement paths used at Kyabram is shown in Table 2.
- 124

125

Figure 2: Point and area gas release sources and OP sensors path geometries (distances in m) at Kyabram July-August 2005. Point source 1 is in green and 2 is in blue. Area source 3 is 25 × 25 m, and area source 4 is 40 × 15 m. The FTIR measurement path 1 and 2 was 137 and 125 m (two-way path), respectively. Laser NH₃ and CH₄ sensor were parallel to FTIR path 2 (dashed yellow and blue lines respectively). Sonic anemometer was located to the south of the site (dark green triangle).

132 (SLPM) and N_2O was released at 5 SLPM, from a single release point, over a three-day study (1-3 August 2005) (Fig.

133

2).

134

The first trial of area source release measurements was undertaken on the evening of 1 August 2005 using the 25×25 m area source (source 3) and path 1. Unfortunately, wind conditions were such poor that very little of the released plume crossed the measurement path. Subsequently, a period in the middle of the day with source 3 and path 2 was employed using the lasers (NH₃ only) and one FTIR. The FTIR was set up on the path 2 and laser NH₃ sensors were run parallel 3 m north of the FTIR path. Thereafter, the area source 4 (40 × 15 m) and path 2 were used coupled with the lasers (NH₃ and CH₄) and the FTIR. Two OPL CH₄ lasers were located 8 m downwind from the area source, two

¹³¹ During the point source release trials, one FTIR was set up on path 1. CH₄ and NH₃ were released at 9 std L min⁻¹

- 141OPL_NH3 sensors were run parallel 2 m downwind of area source, and OP-FTIR at 5 m downwind of the source at142the same time (Fig. 2). The path height for all OP sensors was 1.7 m and the measurement path was 137 and 125 m
- 143 for path 1 and 2, respectively.
- 144

The OP-FTIR was also examined at Wollongong sports field during a release trial from for two days (the layout of experiment is not shown here). NH₃, CH₄, and N₂O were released at the point source (1.28 m above the ground). The path length of OP-FTIR and its distance from the source was initially 87.5 (two-way path) and 44 m, respectively, the OP-FTIR was then moved further away from the source, 107 m (two-way path) from the source with a longer

- 149 measurement path of 150 m.
- 150

151 Furthermore, to check the long-term performance of precision and accuracy of the instruments, we conducted side-152 by-side measurements to evaluate sensor differences at Wollongong and a commercial feedlot in northwest of Victoria. 153 During the intercomparison of lasers and FTIR at Wollongong, the OPL sensors (two for CH4 and two for NH3) and 154 the Bomem OP-FTIR recorded mixing ratios over a path length of 148 m (two-way path) before and after the gases 155 were released. At the commercial feedlot, two OP-FTIR spectrometers were run side-by-side. Mixing ratios of CH4, 156 N₂O, CO₂, and NH₃ were simultaneously measured for 6 days with the path length of 100 m (two-way path), and 157 measurement height of 1.5 m above the ground. Flasks (600 millilitre, mL) were evacuated prior to gas sampling. 158 Each sample day during stable boundary layer conditions (Monin-Obukov length L, $L \cong 0-10$ m), air samples were 159 collected simultaneously at three points (0, 50, 100 m from the spectrometer) along the measurement path. Total 14 160 samples over a 5-day period were collected. The air samples were analysed using a closed-path FTIR at the off-site 161 laboratory at University of Wollongong, which has been calibrated to the standard gases CH4, N2O, and CO2 (Griffith 162 et al., 2012). The concurrent mixing ratios of CH₄, N₂O, and CO₂ measured by two FTIR were compared to that of air

163 samples.

164 2.3 Gas release system

165 The controlled gas releases were of NH₃ (>99%, BOC refrigeration grade, Australia), CH₄ (compressed natural gas, 166 89% CH₄, Agility, Australia), and N₂O (>99%, BOC Instrument grade, Australia) supplied from high pressure 167 cylinders. Each of the gas flows was controlled by a mass flow controller with $\pm 2\%$ full scale repeatability (Smart-168 TrakTM series 100, Sierra Instruments Inc., California, USA). Each gas cylinder was connected to the mass flow 169 controller with 1/4" nylon tubing, the gas outflow from each mass flow controller was released to the atmosphere 170 through another length of nylon tubing. Each gas flow controller was scaled for the gas measurement using the 171 manufacturers data. Controlled gas flow rates were logged every minute using a data logger (DataTaker, Melbourne). 172 For point-source emissions, the outlets of the three gases were co-located at a release height of 0.5-1.28 m above 173 ground. For surface area emissions, the flows were fed into a length of drip-irrigation tubing (Miniscape, 8 mm) with 174 valve holes every 2.5 m and spread over a 25×25 m or 40×15 m grid at ground level.

175 **2.4 Open-path spectrometers**

176 2.4.1 Open-path lasers

177 Four open-path lasers (OPL, GasFinder2.0, Boreal Laser Inc, Edmonton, Alberta, Canada) were used. Two units (1012 178 and 1013) measured CH₄, the other two (1015 and 1016) measured NH₃. Each OPL was associated with a remote 179 passive retro reflector that delineated the path. The OPL contains a transceiver that houses the laser diode, drive 180 electronics, detector module and micro-computer subsystems. Collimated light emitted from the transceiver traverses 181 the OP to the retro reflector and back. A portion of the beam passes through an internal reference cell. Trace gas 182 concentration in the optical path is determined from the ratio of measured external and reference signals. Sample scans 183 are made at approximately 1 s interval and the data were stored internally as one-minute averages. Transceivers are 184 portable, tripod-mounted, battery operated (12 VDC). The retro reflector is tripod-mounted and composed of an array 185 of six gold-coated 6 cm corner cubes with effective diameters of approximately 20 cm. Alignment of transceiver and 186 retro reflector is straightforward and generally stable for several hours over path lengths up to 500 m. The nominal 187 sensitivity of the laser units is 1 part per million-metre (ppm-m), corresponding to 10 ppb for a 100-m path.

188 2.4.2 Open-path FTIR

189 There were two different open-path FTIR units used in these studies. The first unit consisted of a Bomem MB100-2E 190 FTIR spectrometer (ABB Bomem, Quebec, Canada) and a modified Meade 30.5 cm diameter LX200 Schmidt-191 Cassegrain telescope that were assembled at the University of Wollongong along with software (Tonini, 2005). 192 Operationally, the transfer optics take the modulated infrared radiation from the FTIR through the telescope to reduce 193 beam divergence to a set of retro reflectors placed at some distance away, collect the returned radiation, and focus the 194 radiation onto a liquid nitrogen cooled MCT detector. A Zener-diode thermometer (type LM335) and a barometer 195 (PTB110, Vaisala, Helsinki, Finland) provide real-time air temperature and pressure data for the analysis of the 196 measured spectra. The spectrometer is operated at 1 cm⁻¹ resolution, and one spectrometer scan takes approximately 197 4 secs (13 scans min⁻¹). For acceptable signal to noise ratios, scans are generally averaged for at least 1 min. 198 Immediately following each measurement, the spectrum is analysed (see below) and calculated concentrations are 199 displayed and logged in real time together with ambient pressure and temperature. Operation is continuous and fully 200 automated by the software to control the spectrometer, data logging and spectrum analysis (Paton-Walsh et al., 2014). 201 Under normal operation the detector must be re-filled with liquid nitrogen once per day, and occasional re-alignment 202 of the spectrometer on the tripod may be required depending on the stability of the tripod footings.

203

Quantitative analysis to determine trace gas mixing ratios from FTIR spectra is based on non-linear least squares fitting of the measured spectra by a computed spectrum based on the HITRAN (high-resolution transmission molecular absorption) database of spectral line parameters (Rothman et al., 2009; Rothman et al., 2005) using a model calculation (Griffith, 1996). The FTIR spectrum is iteratively calculated until a best fit to the measured spectrum is obtained. The mixing ratio of absorbing species in the open path is obtained from the best-fit input parameters to the calculated spectrum (Griffith, 1996; Smith et al., 2011). We analysed three separate spectral regions: CO₂, N₂O and CO (2130–2283 cm⁻¹), CH₄ and water vapour (2920–3020 cm⁻¹) and NH₃ (900–980 cm⁻¹).

- 212 The second FTIR unit was the Bruker IRcube spectrometer (Matrix-M IRcube, Bruker Optics, Ettlingen, Germany) 213 that was developed based on the same principle of Bomem spectrometer (University of Wollongong) (Paton-Walsh et al., 2014; Phillips et al., 2019). This Bruker OP-FTIR replaced the liquid nitrogen system by a Stirling cycle 214 215 mechanical refrigerator, and a 25.4 cm diameter telescope and a secondary mirror were built to create a 25-mm parallel 216 beam to extend the measurement path up to 500 m. The analytical spectral regions are the same as Bomem MB 100. 217 More details of Bruker IRcube spectrometer can be found in Bai (2010). The system parameters from both FTIR are 218 summarized in Table 3. Recently, a custom-made motorised tripod head has been installed to allow the spectrometer 219 to be aimed at multiple paths where the retro-reflectors were separated vertically or horizontally (Bai et al., 2016;
- 220 Flesch et al., 2016).
- 221

222 Table 3. The system parameters between OP-FTIR Bomem MB100 and Bruker IR cube spectrometer.

	Bomem MB100	Bruker IRcube
Detector	Liquid N ₂ cooled MCT	Stirling cycle refrigerator cooled MCT
Size of telescope	30.5 cm	25.4 cm
SNR ^{§#}	~6000	~9000
Weight	Heavy	Light
Optics dust proof	No	Yes
Motorised aiming system	No	Yes

⁸ SNR, signal to noise ratio. A transmission spectrum is calculated by taking ratios of two successive spectra and measuring root

mean square (rms) noise at a spectral region 2500-2600 cm⁻¹.
 # measured over 100 m path length (two-way path).

. .

226 **2.5 Weather data**

- 227 A three-dimensional (3-D) sonic anemometer (CSAT3, Campbell Scientific, Logan, Utah, US) with data logger
- 228 (CR5000, Campbell Scientific, Logan, Utah, US) were used to record wind speed and direction along with the
- 229 turbulence statistics at a frequency of 10 Hz. The 15-min interval data were then transformed to friction velocity
- 230 (u_{*}) , atmospheric stability (L) and surface roughness length (z_{θ}) as half-hour averages, determining the time
- 231 increments of OP sensor data.

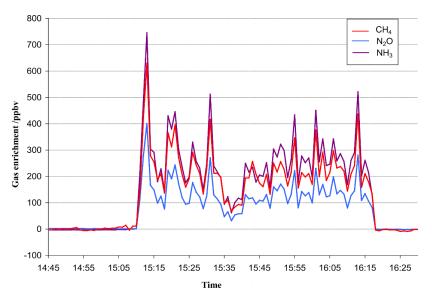
232 3 Results and Discussions

233 3.1 OP-FTIR measurements

The wind was steady from the NNW (325-335°) at 1.8-3.5 m s⁻¹ over the measurement period of 14:45-16:30 on the

235 28 July 2005 of Kyabram trial (T1). From 14:45-15:10 and after 16:20 background data were collected. Figure 3

shows the FTIR measurements of all three gases during this period, expressed as path-average mixing ratios in ppbv


237 after subtracting the background level. We found that the enhanced mixing ratios of the source (downwind minus

- 238 upwind mixing ratios) of CH₄, N₂O, and NH₃ measured by OP-FTIR followed a similar correspondence (Fig. 3).
- 239

240

242Figure 3: Measured FTIR mixing ratios of CH4, N2O and NH3 after subtracting the background levels during a point source243gas release experiment at Kyabram on 28 July 2005.

244

245 We also found that the mean measured FTIR mixing ratio of CH₄:N₂O was 1.61 compared to the release rate ratio of 246 1.60, and the mean measured mixing ratio of NH₃:N₂O was 1.84 (release rate ratio was 1.80). The release rates with 247 measured regression slopes for all trial release measurements made at both Wollongong and Kyabram are shown in 248 Table 4. In all but three cases the ratio was within 1-8% of the 1:1 ratio. The OP-FTIR system uses no calibration 249 gases but system calibration is based on the accuracy of the HITRAN line parameters and the MALT spectrum model. 250 Typical absolute accuracy is 1-5% depending on species and open path setup, with precision (reproducibility) normally 251 much better than 1% (Esler et al., 2000). The use of MALT synthetic spectra based on quantum mechanical parameters 252 has been shown to yield accurate results (within 5% of true amounts) when tested against calibration gases in a 3.5 253 litters multi-pass gas cell with 24 m optical path length (Smith et al., 2011). In each case of disagreement, the 254 correlation remains strong, and the systematic differences can reasonably be attributed to either a leak in the release 255 system or in the case of low NH3 due to the losses by adsorption at the (wet) ground over the longer release-256 measurement distance during the experiment.

257

Table 4. Comparison of the release rate ratios and OP-FTIR measured enhanced mixing ratios for the controlled release gas measurements.

Location and time	Distance of gas release	Compared	Ratio of	Ratio of measured
of measurement	(m), height of gas release	gases	controlled release	enrichments
period	(m), measurement path		rates	downwind
	distance (m)			(slope of
				regression

			(± 2%	\pm 95% confidence
			measurement	interval)
			error)	
Kyabram				
(T1)				
Day 1	10, 0.5, 137	NH_3, N_2O	1.800 ± 0.036	1.841 ± 0.026
1445–1625 h		CH ₄ , N ₂ O	1.602 ± 0.032	1.609 ± 0.034
Day 2-3	10, 0.5, 137	NH ₃ , N ₂ O	1.000 ± 0.020	1.024 ± 0.010
1730–830 h		$CH_4, N_2O^{\&}$	0.890 ± 0.018	0.946 ± 0.038
Day 2	10, 0.5, 137	NH ₃ , N ₂ O	1.000 ± 0.020	1.028 ± 0.019
900–1440 h		CH_4, N_2O	0.890 ± 0.018	0.873 ± 0.024
Day 2	10, 0.5, 137	NH ₃ , N ₂ O	1.800 ± 0.036	$1.990 \pm 0.034^{\#}$
1440–1700 h		CH_4, N_2O	1.602 ± 0.032	1.668 ± 0.049
(T2)				
Day 1	52, 0.5, 137	NH ₃ , N ₂ O	1.800 ± 0.036	1.783 ± 0.018
1545–1625 h		CH_4, N_2O	0.890 ± 0.018	$0.802 \pm 0.025^{\#}$
Wollongong				
(T3)				
Day 1	44, 1.28, 87.5	NH ₃ , N ₂ O	1.000 ± 0.020	1.009 ± 0.020
2048–0500 h		CH4, N2O	*	*
Day 2	107, 1.28, 150	NH ₃ , N ₂ O	1.000 ± 0.020	$0.879 \pm 0.019^{\#}$
2030–0500 h		CH_4, N_2O	0.890 ± 0.018	0.897 ± 0.032

260

* no data due to CH₄ gas flow problems during this time period. [#] ratio that is not in agreement with the controlled release ratio ($\rho < 0.05$). 261

[&] the measured mixing ratio is from 1730–030 h because of an increased background effect from 030–830 h. 262

263 3.2 OP-FTIR error assessment

264 From measurements before and after release, the measurement precision and accuracy of the OP-FTIR measurements

265 were assessed (Table 5). Measured background mixing ratios of CH4 and N2O at Kyabram were similar to the clean

266 air values measured at the Cape Grim Baseline Air Pollution Station in Tasmania. Higher background level at 267 Kyabram was likely due to local sources of CH₄ (large regional cattle population) and N₂O (soil emissions). The differences between measured background values at Kyabram and Cape Grim were < 3% and consistent with the 268 269 known absolute uncertainty in OP-FTIR calibration (1-5%, the accuracy of MALT and HITRAN).

270

271 Regression analyses showed a residual scatter (standard deviation of the residuals) around the regression line of

272 typically 8 ppbv for NH₃:N₂O and 18 ppbv for CH₄:N₂O (data not shown). This scatter was significantly larger than

273 the measurement precisions (Table 5) and suggested that the fundamental limit to accuracy and applicability of the

274 OP technique came from variability in the dispersion of the trace gases by atmospheric turbulence -i.e., even when

275 co-released at nominally the same point, statistical fluctuations ensured that gas parcels did not follow exactly the

276 same paths. It thus appeared that measurement precision was not the limiting factor and was sufficient for the purposes

277 of the measurements. Background variations and turbulence statistics were the error-limiting factors in the OP measurements.

- 278
- 279

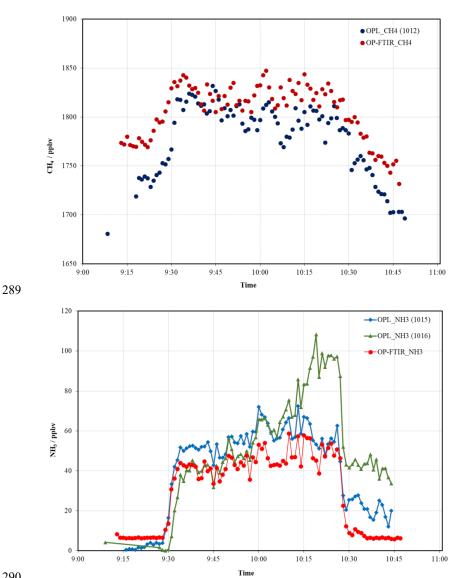
280 Table 5. Measurement precision and comparison with clean air composition for OP-FTIR measurements during the trace 281 282 gas release trial experimental period at Kyabram. Background mixing ratios measured at Cape Grim Baseline Air Pollution Station in Tasmania at the same time are also shown.

Target gas	Background	Background	Precision
	measured at Cape Grim	measured at	typical 10 for repeated
		Kyabram	measurements
CH ₄ / ppbv	1738	1755	3.8
N ₂ O / ppbv	317.8	324	0.3
NH ₃ / ppbv	0	< 1	0.4

283 Note: 1σ is standard error.

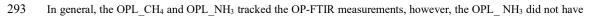
284 3.3 Comparisons of OPL and OP-FTIR measurements

285 The one-minute averages of CH₄ and NH₃ mixing ratios measured by OPL (one unit for CH₄, 1012, and two units


286 for NH₃, 1015 and 1016) and the OP-FTIR over the period of controlled gas release at Kyabram (T2) were

287 compared (Fig. 4).

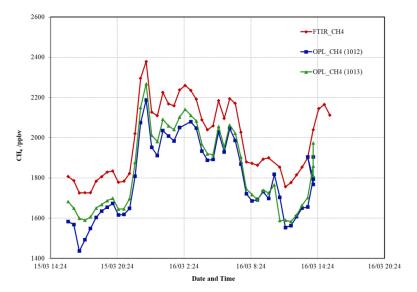
288



290

291 292 Figure 4: Comparison of CH4 (upper) and NH3 (lower) mixing ratio measurements from the OP-FTIR and OPL downwind of a ground-level grid source 40 × 15 m wide (path length = 125 m) at Kyabram (T2).

294 a stable baseline (fluctuations of around 15 ppbv) and showed significantly lower signal: noise ratio than that of the



295 OP-FTIR. Offsets in the measured mixing ratios may be due to the relative positions of the emission source and the 296 instruments.¹

297

A second intercomparison between the CH₄ OPL (1012 and 1013) and OP-FTIR measurements at Wollongong is 298 299 shown in Fig. 5. The 30-min averaged OPL CH4 tracked the OP-FTIR measurements, but recorded lower values, with background CH₄ lower than the Cape Grim background of 1738 ppbv (Table 5). There were also discrepancies 300 301 between the two lasers: 1013 unit was more stable and measured higher values than that of 1012 unit. Flesch et al. 302 (2004) report a similar problem with the long-term stability of CH₄ lasers and implement a rigorous calibration 303 strategy, suggesting recalibrating several times over the course of a field campaign. Laubach et al. (2013) reported the 304 temperature-dependent effect on OPL CH₄ performance. Implementation of a routine calibration protocol would 305 account for these offsets as long as they were consistent. However, fluctuations of around 10 ppbv characterized the

306 limit on the resolution of the instrument.

307

308Figure 5: Thirty-minute averaged CH4 mixing ratio measured by OP-FTIR and both OPL units (1012 and 1013) positioned309side-by-side (path length = 148 m) at Wollongong site.

310 We also compared thirty-minute averages of NH₃ measurements at Wollongong (data not shown) prior to and after 311 the gas release (NH₃ release rate at 5 L min⁻¹). Prior to the gas release, the laser mixing ratios at background levels 312 appear elevated while the FTIR showed greater stable baseline, this suggested clearly that the resolution of the lasers

³¹³ was no better than the 1 ppmv-m specified by the manufacturer. After the NH₃ was released, the path-averaged mixing

¹ The laser CH_4 mixing ratios may be less than those determined by FTIR because the latter's path was only 5 m downwind of the source while the laser path was 8 m downwind. The reverse situation possibly applies to the NH_3 measurements, where the NH_3 laser path was 3 m upwind of that of the FTIR (Fig. 2).

- 314 ratio rose above 0.1 ppmv, but the OPL_NH₃ measurements were less erratically at these elevated mixing ratios. This
- 315 indicated the detection limit of the OPL_NH₃ was no better than the 1 ppm-m specified by the manufacturer. Rigorous
- 316 calibration should account for between OPL offsets. However, there remained major discrepancies between measured
- 317 mixing ratios of the OPL_NH₃ and OP-FTIR. Clearly, this reflected that the OPL_NH₃ are not suited to monitoring
- 318 background mixing ratios of NH₃ (typically < 10 ppbv). Moreover, they are only likely to be feasible in situations
- 319 where there are very large enrichments in NH₃ as the precision is no better than 10 ppbv over 100–200 m paths.

320 3.4 Comparisons of two OP-FTIR spectrometers

- 321 The ratios of measurement between air samples and FTIR (Bomem and Bruker) are shown in Table 6. We found that
- 322 CH4 results from Bruker FTIR were more reliable in stable conditions than N2O values, but comparable in Bomem

323 FTIR results. Carbon dioxide results from both FTIRs were lower than those of air samples by approximately 15%.

- 324 We also calculated the measurement precisions over a Bruker IRcube which showed higher measurement precision of
- 325 CH₄ and N₂O than Bomem MB100, but similarity in NH₃ precision (Table 7).
- 326

Table 6. Ratios of mixing ratios of CH₄, N₂O, and CO₂ between air samples and OP-FTIR including Bomem MB100 and Bruker IRcube spectrometer[#].

	CH4_air/ CH4_FTIR	N_2O_{air}/N_2O_{FTIR}	CO2_air/ CO2_FTIR
Bomem MB100	0.99 (0.03)	1.01 (0.03)	0.87 (0.02)
Bruker IRcube	1.00 (0.03)	1.04 (0.02)	0.94 (0.03)

⁴mean (standard deviation). The measurements were conducted at stable background conditions for 6 days at Charlton, Victoria.
 The pathlength was 100 m (two-way path), and measurement height was 1.5 m above the ground.

331

332 Table 7. The precisions of CH4, N2O, CO2, and NH3 for OP-FTIR Bomem MB100 and Bruker IR cube spectrometer.

	Bomem	Bruker
Precision [#]		
CH_4	4 ppbv	< 2 ppbv
N_2O	0.3 ppbv	< 0.3 ppbv
CO_2	1.6 ppmv	0.5 ppmv
NH ₃	0.4 ppbv	0.4 ppbv

[#] measured over 100 m path length (two-way path).

334 4 Conclusions

335 We have used OP systems for measuring mixing ratios of CH₄, N₂O, CO₂ and NH₃, and evaluated their performance

and precision. Two OP systems for measuring line-averaged gas mixing ratios have been evaluated over path lengths

337 up to about 200 m.

338

339 The OP-FTIR system can measure multiple gases simultaneously with excellent precision, e.g., CH₄, 2-4 ppbv, N₂O,

340 0.3 ppbv, CO₂, < 2 ppmv, and NH₃, 0.4 ppbv. As the baseline appears to be very stable, we believe OP-FTIR technique

- has accuracy for even small enrichments in GHGs. However, the apparatus remains bulky to set up in a field environment, where access to main power is often difficult. In contrast, the commercial OPL have the advantage of being readily portable and battery powered. This study has evaluated OPL for CH_4 and NH_3 . These instruments have somewhat poorer precision than the OP-FTIR, of around 10 ppbv for CH_4 and 15 ppbv for NH_3 . While the OPL should be capable of following ambient fluctuations in CH_4 gas mixing ratios, the resolution of the NH_3 OPL was greater than the background mixing ratios of NH_3 , resulting in large errors when calculating fluxes.
- 347

348 Our studies suggest that the OP-FTIR and OPL are suitable to measure typical enrichments in CH4 and NH3 from 349 agriculture and useful in calculating fluxes from a variety of agricultural activities, such as free-ranging cattle and 350 sheep. We recommend that they are also well-suited to concentrated sources such as feedlots, animal sheds and small 351 enclosures. The OP-FTIR system should also be suited to emissions of CH4 from rice-growing sources and wastewater 352 lagoons. The OP-FTIR system provides excellent NH3 precision suitable for measuring paddock-scale emissions from 353 fertiliser (urea, effluent) applications and dung and urine patches. High detection limit and long-term stability of OP-354 FTIR enables to measure small changes in N₂O emissions at large-scale from fertilizer treatment, or dairy pastures. 355 The OPL NH₃ has low resolution of free-air mixing ratio, in particular weak sources, where the enhanced values are 356 low and the error in background is minimized.

357 5 Data availability

The raw data are not available to the public. For any inquiry about the data, please contact the corresponding author (mei.bai@unimelb.edu.au).

360 6 Author contributions

361 All authors contributed to the conceptualization, methodology, field measurement, data analysis, and draft preparation.

362 7 Acknowledgements

We wish to acknowledge the assistance of many: Ron Teo from the University of Melbourne, the Victorian Kyabram research station for access to their laboratory and experimental facilities, for provision of micrometeorological data at Kyabram, and the assistance of their staff, particularly Kevin Kelly, Rob Baigent. We wish to thank also the Australian Greenhouse Office for their encouragement. Authors would like to thank Travis Naylor, Graham Kettlewell from University of Wollongong for their assistance during this study.

368 8 Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

371 9 References

- Bai, M.: Methane emissions from livestock measured by novel spectroscopic techniques, Doctor of Philosophy PhD
- 373 Thesis, School of Chemistry, University of Wollongong, University of Wollongong, NSW, Australia, 303 pp., 2010.
- 374 Bai, M., Flesch, K. T., Trouvé, R., Coates, T. W., Butterly, C., Bhatta, B., Hill, J., and Chen, D.: Gas Emissions
- during Cattle Manure Composting and Stockpiling, J. Environ. Qual., 49, 228-235,
- 376 <u>https://doi.org/10.1002/jeq2.20029</u>, 2020.
- 377 Bai, M., Flesch, T., McGinn, S., and Chen, D.: A snapshot of greenhouse gas emissions from a cattle feedlot, J.
- 378 Environ. Qual., 44, 1974-1978, <u>https://doi.org/10.2134/jeq2015.06.0278</u>, 2015.
- 379 Bai, M., Sun, J., Dassanayake, K. B., Benvenutti, M. A., Hill, J., Denmead, O. T., Flesch, K. T., and Chen, D.: Non-
- 380 interference measurement of CH₄, N₂O and NH₃ emissions from cattle, Anim. Prod. Sci., 56, 1496-1503,
- 381 <u>https://doi.org/10.1071/AN14992</u>, 2016.
- Bjorneberg, L. D., Leytem, B. A., Westermann, T. D., Griffiths, R. P., Shao, L., and Pollard, J. M.: Measurement of
- atmospheric ammonia, methane, and nitrous oxide at a concentrated dairy production facility in Southern Idaho
- using open-path FTIR Spectrometry, Trans. of the ASABE, 52, 1749-1756, <u>https://doi.org/10.13031/2013.29137</u>,
 2009.
- 386 Bühler, M., Häni, C., Kupper, T., Ammann, C., and Brönnimann, S.: Quantification of methane emissions from
- 387 waste water treatment plants, 13389, 2020.
- de Klein, C., Novoa, R. S. A., Ogle, S., Smith, K. A., Rochette, P., Wirth, T. C., McConkey, B. G., Mosier, A., and
- 389 Rypdal, K.: N₂O emissions from managed soils, and CO₂ emissions from lime and urea application. In: 2006 IPCC
- 390 Guidelines for National Greenhouse Gas Inventories Volume 4 Agriculture, Forestry and Other Land Use,
- Eggelston, S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K. (Eds.), Cambridge University Press, Cambridge,
 United Kingdom and New York, NY, USA., 2006.
- Denmead, O. T.: Novel meteorological methods for measuing trace gas fluxes, Philos. T. R. Soc. A., 351, 383-396,
 1995.
- 395 Denmead, O. T., Harper, L. A., Freney, J. R., Griffith, D. W. T., Leuning, R., and Sharpe, R. R.: A mass balance
- 396 method for non-intrusive measurements of surface-air trace gas exchange, Atmos. Environ., 32, 3679-3688, 1998.
- 397 Esler, M. B., Griffith, D. W. T., Wilson, S. R., and Steele, L. P.: Precision trace gas analysis by FT-IR Spectroscopy.
- 398 1. Simultaneous analysis of CO₂, CH₄, N₂O, and CO in Air, Anal. Chem., 72, 206-215,
- 399 https://doi.org/10.1021/ac9905625, 2000.
- 400 Feitz, A., Schroder, I., Phillips, F., Coates, T., Negandhi, K., Day, S., Luhar, A., Bhatia, S., Edwards, G., Hrabar, S.,
- 401 Hernandez, E., Wood, B., Naylor, T., Kennedy, M., Hamilton, M., Hatch, M., Malos, J., Kochanek, M., Reid, P.,
- 402 Wilson, J., Deutscher, N., Zegelin, S., Vincent, R., White, S., Ong, C., George, S., Maas, P., Towner, S., Wokker,
- 403 N., and Griffith, D.: The Ginninderra CH₄ and CO₂ release experiment: An evaluation of gas detection and
- 404 quantification techniques, Int. J. Greenh. Gas Control, 70, 202-224, <u>https://doi.org/10.1016/j.ijggc.2017.11.018</u>,
 405 2018.
- 406 Flesch, K. T., Baron, V., Wilson, J., Griffith, D. W. T., Basarab, J., and Carlson, P.: Agricultural gas emissions
- during the spring thaw: Applying a new measuremnt technique, Agric. Forest Meteorol., 221, 111-121,
 https://doi.org/10.1016/j.agrformet.2016.02.010, 2016.
- 409 Flesch, T. K., Desjardins, R. L., and Worth, D.: Fugitive methane emissions from an agricultural biodigester,
- 410 Biomass and Bioenergy, 35, 3927-3935, <u>http://dx.doi.org/10.1016/j.biombioe.2011.06.009</u>, 2011.
- 411 Flesch, T. K., Vergé, X. P. C., Desjardins, R. L., and Worth, D.: Methane emissions from a swine manure tank in
- 412 western Canada, Can. J. Anim. Sci., 93, 159-169, <u>https://doi.org/10.4141/cjas2012-072</u>, 2012.
- 413 Griffith, D. W. T.: Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra, Appl. Spectrosc., 50, 414 59-70, 1996.
- 415 Griffith, D. W. T., Deutscher, N. M., Caldow, C., Kettlewell, G., Riggenbach, M., and Hammer, S.: A Fourier
- transform infrared trace gas and isotope analyser for atmospheric applications, Atmos. Meas. Tech., 5, 2481-2498,
 <u>https://doi.org/10.5194/amt-5-2481-2012</u>, 2012.
- 418 Harper, L. A., Flesch, T. K., Powell, J. M., Coblentz, W. K., Jokela, W. E., and Martin, N. P.: Ammonia emissions
- 419 from dairy production in Wisconsin1, J. Dairy Sci., 92, 2326-2337, https://doi.org/10.3168/jds.2008-1753, 2009.
- 420 Harper, L. A., Flesch, T. K., and Wilson, J. D.: Ammonia emissions from broiler production in the San Joaquin
- 421 Valley1, Poult. Science, 89, 1802-1814, <u>https://doi.org/10.3382/ps.2010-00718</u>, 2010.
- 422 IPCC: Emissions from managed soils, and CO₂ emissions from lime and urea application. In '2006 IPCC Guidelines
- 423 for National Greenhouse Gas Inventories. Vol. 4. Agriculture forestry and other land use'. Ch. 11. Prepared by the
- 424 National Greenhouse Gas Inventories Programme, International Panel on Climate Change, Hayama, Japan, 54 pp.,
- 425 2006.

- 426 Laubach, J., Barthel, M., Fraser, A., Hunt, J. E., and Griffith, D. W. T.: Combining two complementary
- 427 micrometeorological methods to measure CH₄ and N₂O fluxes over pasture, Biogeosciences, 13, 1309-1327,
- 428 <u>https://doi.org/10.5194/bg-13-1309-2016</u>, 2016.
- 429 Loh, Z., Chen, D., Bai, M., Naylor, T., Griffith, D., Hill, J., Denmead, T., McGinn, S., and Edis, R.: Measurement of
- 430 greenhouse gas emissions from Australian feedlot beef production using open-path spectroscopy and atmospheric
- dispersion modelling, Aust. J. Exp. Agr., 48, 244-247, 2008.
- 432 Loh, Z., Leuning, R., Zegelin, S., Etheridge, D., Bai, M., Naylor, T., and Griffith, D.: Testing Lagrangian
- 433 atmospheric dispersion modelling to monitor CO₂ and CH₄ leakage from geosequestration, Atmos. Environ., 43,
 434 2602-2611, 2009.
- 435 McGinn, S. M.: Measuring greenhouse gas emissions from point sources, Can. J. Soil Sci., 86, 355-371, 2006.
- 436 McGinn, S. M., Coates, T., Flesch, T. K., and Crenna, B.: Ammonia emission from dairy cow manure stored in a
- 437 lagoon over summer, Can. J. Soil Sci., 88, 611-615, https://doi.org/10.4141/CJSS08002, 2008.
- McGinn, S. M. and Flesch, T. K.: Ammonia and greenhouse gas emissions at beef cattle feedlots in Alberta Canada,
 Agri. Forest Meteorol., 258, 43-49, <u>https://doi.org/10.1016/j.agrformet.2018.01.024</u>, 2018.
- NIR: National Inventory Report 2015 Volume 1, Commonwealth of Australia 2017. <u>www.environment.gov.au</u>.
- 441 (updated June 2017). 2015.
- 442 Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T., and Guérette, É. A.: New emission factors for
- 443 Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy-Part 1: Methods and
- Australian temperate forest fires., Atmos. Chem. Phys., 14, 11313-11333, <u>https://doi.org/10.5194/acp-14-11313-</u>
 2014, 2014.
- 446 Phillips, F. A., Naylor, T., Forehead, H., Griffith, D. W. T., Kirkwood, J., and Paton-Walsh, C.: Vehicle Ammonia
- 447 Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red 448 Spectroscopy, Atmosphere, 10, 208, 2019.
- 449 Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R.,
- 450 Campargue, A., Champion, J. P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J. M.,
- 451 Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J. Y., Massie, S. T.,
- 452 Mikhailenko, S. N., Miller, C. E., Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V.
- I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Šimečková, M., Smith, M. A. H., Sung, K., Tashkun, S.
 A., Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic
- 455 database, J. Quant. Spectrosc. Ra., 110, 533-572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
- 456 Rothman, L. S., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M., Brown, L. R., Carleer, M. R., Chackerian Jr,
- 457 C., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Flaud, J. M., Gamache, R. R., Goldman, A., Hartmann, J. M.,
- 458 Jucks, K. W., Maki, A. G., Mandin, J. Y., Massie, S. T., Orphal, J., Perrin, A., Rinsland, C. P., Smith, M. A. H.,
- 459 Tennyson, J., Tolchenov, R. N., Toth, R. A., Vander Auwera, J., Varanasi, P., and Wagner, G.: The HITRAN 2004
- 460 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 96, 139-204, <u>https://doi.org/10.1016/j.jqsrt.2004.10.008</u>,
 461 2005.
- 462 Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J.,
- 463 Jafari, M., Masera, O., Mbow, C., Ravindranath, N. H., Rice, C. W., Abad, C. R., Romanovskaya, A., Sperling, F.,
- and Tubiello, F.: Agriculture, Forestry and Other Land Use (AFOLU). In: In: Climate Change 2014: Mitigation of
- 465 Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel
- 466 on Climate Change, Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A.,
- 467 Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and
- 468 Minx, J. C. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
- 469 Smith, T. E. L., Wooster, M. J., Tattaris, M., and Griffith, D. W. T.: Absolute accuracy and sensitivity analysis of 470 OP-FTIR retrievals of CO₂, CH₄ and CO over concentrations representative of "clean air" and "polluted plumes",
- 471 Atmos. Meas. Tech., 4, 97-116, <u>https://doi.org/10.5194/amt-4-97-2011</u>, 2011.
- Tomkins, N. W., McGinn, S. M., Turner, D. A., and Charmley, E.: Comparison of open-circuit respiration chambers
 with a micrometeorological method for determining methane emissions from beef cattle grazing a tropical pasture,
- 474 Anim. Feed Sci. and Tech., 166-167, 240-247, https://doi.org/10.1016/j.anifeedsci.2011.04.014, 2011.
- 475 Tonini, M.: Measuring methane emissions from cattle using an open path FTIR tracer based method, Bachelor of
- 476 Science with Honours, Department of Chemistry, University of Wollongong, Wollongong, Australia, 68 pp., 2005.
- 477 VanderZaag, A. C., Flesch, T. K., Desjardins, R. L., Baldé, H., and Wright, T.: Measuring methane emissions from
- 478 two dairy farms: Seasonal and manure-management effects, Agri. Forest Meteorol., 194, 259-267,
- 479 https://doi.org/10.1016/j.agrformet.2014.02.003, 2014.
- 480